GENERAL DESCRIPTION

RhombusMF6800ST is a high performance ISO14443 TYPE B format IC card read/write engine module. It can be applied in RFID system such as office/home security, personal identification, access control, smart card and production control.

FEATURES

- Support external balance drive transceiver antenna
- Maximum effective distance up to 100mm
- Typical R/W operation time less than 2.5ms and 6ms respectively
- Low power dissipation with single power supply;
- Support TTL level serial port
- Support SR176 and its compatible format card of ST company
- Pin description compatible with 40PIN IC socket.
- Very small outline

CHARACTERISTICS

Absolute Maximum Ratings

ITEM	SYMBOL	VALUE	UNIT
Power Supply	VCC	6	V
Operating Temp.	Topr	0~+70	°C
Storage Temp.	Tstr	-55~+125	°C

Electrical and Mechanical Specification
Under TA=25°C, VCC=+5V unless specified

ITEM	SYMBOL	MIN	ТҮР	MAX	UNIT
Power Supply	VCC	3.3	5	5.5	V
Current Supply	I _C (work)		100	150	mA
	I _{S(standby})		10		mA
Operation Freq.	F _{REQ}		13.56		MHz
Effective Distance**	DIS	0	50	100	mm
Read operation	Trd		2.5		ms
Time **					
Write operation	Twr		6		ms
Time**					

*Effective Distance depends on tags, antenna design and operating environment.

**Protocol transfer time uncounted.

INTERFACE DESCRIPTION

The bottom view of engine module

NUMBER	SYMBOL	DESCRIPTION
1	TXD	Serial data output
2	RXD	Serial data input
3	LED_DRV	Working state LED output *
4	TX1	Antenna output drive 1
5	TX2	Antenna output drive 2
6	AGND	Simulation GND. Connected with digit GND in the module
7	RX	Receiving signal input, directly received by antenna loop
8	DGND	Digit GND
9	DVCC	+5V Power Supply
10	NRST	Low effective reset **

*Module working status can be directly connected with LED outside. If the led is on, it indicates normal working state. If the led is off, it indicates the module is in standby state.

** NRST generally need not be connected, could be hung in the air. Connected with low level could reset the interior circuit of the module.

APPLICATION DATA

I. Card dataSR176 follows ISO14443-2&3TYPE B standard.1. Performance parameter

- Accord with ISO14443-2 TYPE B RF interface criterion
- Accord with ISO14443-3 TYPE B data frames format criterion
- Operating freq. 13.56MHz
- Sub-carrier wave 847KHz
- Data exchange speed 106kbit/s
- 256bit data memory capacity
- The exclusive serial number of 64bit card, 8bit chip code, 8bit protect byte.
- 176bit can lock EEPROM user data section
- Data could be updated more than 1,000 times, could be kept more than 10 years.

2. Memory Structure

256 bit memory section of SR176 card is divided to 8 groups. 16 blocks in all. Every sector consists of 16bit. The basic unit of the access operation to SR176 data is 16bit. The Structure of memory section is as follows:

Block	Group	The highest bi	t 16bit block da	ata the lowes	t bit	Description	
Address	Number	b15	b8 b7	b0			
0	0		UID0			Unchangeable	64bit
1			UID1			exclusive	serial
2	1		UID2			number	
3			UID3				
4	2	U	ser data section			Can lock EEPR	ROM
5		U	ser data section				
6	3	U	User data section			Can lock EEPR	ROM
7		U	User data section				
8	4	User data section				Can lock EEPR	ROM
9		User data section					
10	5	User data section				Can lock EEPR	ROM
11		U	User data section				
12	6	U	User data section			Can lock EEPR	ROM
13		U	User data section				
14	7	U	User data section			Can lock EEPR	ROM
15		Lock	reserved	chip code			
		control					
		byte					

The first 4 blocks of the memory section are to save the exclusive serial number of card of 64bit, where data can not be changed.

From the 4th block to the 14th block are EEPROM user data sections of 176bit for storing data, where data could be rewritten.

The 15th block is the control block. The high 4bit of the low byte are the reserved bits.

The low 4bit are chip codes. In the application process, execute operation to a specified card using chip code. The high byte 8bit are user data section locked state byte. Every bit corresponds with the locked state of a group of memory sections. 0 indicates write operation is allowed to this group.1 indicates write operation is forbidden to this group. The 15th block has one-off programmable characteristic, namely, if a certain bit is set as 1,it is prohibited to be reset as 0. The default of this byte is 0X03, and the serial number of this card is prohibited to be rewritten.

II. Serial port protocol

1. Serial port Specification

Data communication could be realized through serial port between RhombusMF6800ST and PC (SCM, MPU, Controller). Corresponding operation is executed according to the command and requirements of PC. The specification of data frames of serial port:1 start bit, 8 data bits , 1 stop bit, but no parity bit .Baud rate:9600. In serial communication, the least significant byte is transferred first, and the least significant bit of every byte is transferred first.

2. Control Character

Four control bytes are defined to describe the start, the end, responsion, and no-responsion of the serial communication. The details are as follows:

Definition	Symbol	Value
Start Symbol	STX	0x02
End Symbol	ETX	0x03
Responsion	ACK	0x06
No Responsion	NAK	0x15

3. Protocol Description

The communication process: First, PC send command and data to RhombusMF6800ST engine, then RhombusMF6800ST send the command execution result state and data back to PC. The communication two parties need a handshake course to start a communication, then data are transferred.

РС	Data	RhombusMF6800ST	Specification
	Transmission		
	Direction		
STX	\rightarrow		If PC receives no ACK or NAK in

The command of PC are sent as the following form:

	\leftarrow	ACK	20ms, STX could be re-sent. After PC
			receives ACK, command data block
command	\rightarrow		starts to be sent in 45ms. Every two
Data			adjacent byte should be sent less than
Block			15ms one after another. In the process
+			of sending command data block, if PC
ETX			receives any message that
			RhombusMF6800ST send, it all
			indicates lost synchronization of the
			synchronous communication between
			PC and RhombusMF6800ST. Then
			PC could stop sending command,
			waiting 15ms to re-start handshake
			process.

First, after PC send STX and wait for ACK that is sent back by RhombusMF6800ST to start up transferring data block, if ACK and NAK are not received within 20ms,PC could choose to re-send STX or stop communication, and carry out disposal according to communication failure. After PC receives the ACK response of RhombusMF6800ST, it will send command data block including operation command, operation data to RhombusMF6800ST.lastly, PC will send ETX character to end the transmission, and wait for the sent- back command execution result.

RhombusMF6800ST will finish command execution and send back the result in 150ms after it receives the command of PC. The following form is the returning process of the command execution result:

RhombusMF6800ST	Data	PC	SPECIFICATION
	Transmission		
	Direction		
	\rightarrow		RhombusMF6800ST will end
	←	ACK	transmission if it does not receive ACK in
response	\rightarrow		45ms.
Data			RhombusMF6800ST starts to respond the
Block			transmission of data block in 45ms after it
+			receives ACK.
ETX			

After RhombusMF6800ST send STX and wait for ACK that is sent back by PC to start up transferring data block, if ACK is not received within 45ms, RhombusMF6800ST could stop communication. After RhombusMF6800ST receives the ACK response of PC, it will send response data block including command execution status, execution result data to PC. Lastly, RhombusMF6800ST will send

ETX character to end the transmission.

4. The format of data block

A. Command data block	
-----------------------	--

SeqNo Cmd Len Data[] BCC	SeqNo	Cmd	Len	Data[]	BCC	
--------------------------	-------	-----	-----	--------	-----	--

SeqNo: Data package of 1 byte exchange serial number, range: $0 \sim 255$.

After one correct data exchange, when PC sends the next command, add 1 to the serial number. RhombusMF6800ST will return the most newly-received data package number in the response data block. The PC program can utilize this number to strengthen the integrality of the communication process, and can also neglect disposal to this number to simplify the communication process.

Cmd: Operating command notation of 1 byte, there are defined 8 commands in all.

Len: the length of command operating data of 1 byte, range: $0 \sim 3$, 0 denotes non operation data.

- *Data[]:* Command operating data of Len bytes, if Len=0,it indicates there is no data.
- *BCC:* Check sum of 1 byte is the XOR byte by byte of all data in the data block(except BCC).

 $BCC = SeqNo \oplus Cmd \oplus Len \oplus Data[]$

B. Response data block

SeqNo	Status	Len	Data[] BCC
-------	--------	-----	------------

SeqNo: Most recent-received data package exchange serial number of 1 byte. *Status*: command execution result state of 1 byte, o denotes successful command execution. Other value all denote error code.

Error code	Description
0x01	Operating command notation error
0x02	Command operating data length error
0x03	Command data block check sum error
0x04	No card responsion
0x05	Card data flow format error
0x06	Card data flow CRC error
0x07	R/W address violation error(read command operating
	address should be 0~15; write command operating
	address should be 4~14)

0x08	RF output not started up(in RF close					
	status,RhombusMF6800ST does not execute any					
	command except start-up or close)					
0x09	Write operation failure					
0x0A	Lock operation failure					

Len: The length of the response data of 1 byte. range: $0\sim2$ If error occurs in the command execution, the value is 0.

Data[]: Response data of Len bytes. If Len=o, it means no data.

BCC: Check sum of 1 byte is the XOR byte by byte of all data in the data block(except BCC).

 $BCC = SeqNo \oplus Cmd \oplus Len \oplus Data[]$

5. Detailed description of operating command

RhombusMF6800ST supports 8 operating commands. They are startup RF, close RF, initialization, choose, read, write, lock, stop. Among them, the first two commands are to control the working state of the internal RF transmission circuit of RhombusMF6800ST.Other commands are for executing card operation.

SR176 Card has 5 operating states. It accepts different operation and carries out corresponding state conversion under different states as follows:

Command Response Description Command Data Content **Result State** Data Length Data Content Notation Length 0x41 0 0 0 Startup RF output, -engine enter the normal Error Code 0 working state. 0 0 0 Close RF output, 0x54 --Error Code 0 engine enter the standby _ state. 0x49 0 0 1 Chip code Initialization command -Error Code 0 choose one card from the _ IC cards in effective RF field and place it in activation state, and return its chip code (low 4bit effective) 0x53 1 0 Chip code(low 1 Chip code Choose command 4bit effective, 0 Choose with Error code cards _ high 4bit specified chip code from reserved as 0) the IC cards in effective RF field and place it in activation state. 1 2 0x52 Block address 0 two-byte Read command block data The range of block Address 0~15,the 15th in the front of low byte block is the control block of the card row Error code 0 -0x57 3 0 0 Block address Write command -+Error code 0 The range of block address _ two-byte block 4~14 data in the front of low byte row 0x50 2 Two-byte card 0 0 Lock command

The command format supported by RhombusMF6800ST is as follows:

RhombusMF6800ST

		control block	Error code	0	-	The content actually
		data in the front				written in is the logic or of
		of low byte				the former control block
		row				data and the specified data
						in command
0x48	0	-	0	0	-	Stop command
			Error code	0	-	Card will cease all
						responses after it receives
						stop command until the
						card is removed from and
						reenter the effective RF
						field

6. Example

.

Read the content of the 5th block of one card(If RF output is started, the chip code is 0,and the data of the 5th block inside the card is 0X55AA, the following forms are the content of the communication between PC and RhombusMF6800ST)

The 1ST step: Initialization

Command	РС	STX		0x00 0x49 0x00 0x49	ETX
		¥	1	¥	Ļ
	RhombusMF6800ST		ACK		

Response	PC		ACK		
		1	↓	1	1
	RhombusMF6800ST	STX		0x00 0x00 0x01 0x00 0x01	ETX

The 2nd step: select(If operating directly after initialization, this step could be omitted)

Command	PC	STX		0x01 0x53 0x01 0x00 0x53	ETX
		Ļ	1	Ļ	↓
	RhombusMF6800ST		ACK		

Response	PC		АСК		
		1	Ļ	1	1
	RhombusMF6800ST	STX		0x01 0x00 0x01 0x00 0x00	ETX

The 3rd step: read

-				
Command	PC	STX	0x02 0x52 0x01 0x05 0x54	ETX

Mini-13.56MHz RF card R/W Engine Module

RhombusMF6800ST

		↓	1	Ļ	
Rho	mbusMF6800ST		ACK		

Response	РС		ACK		
		Ť	Ļ	1	1
	RhombusMF6800ST	STX		0x02 0x00 0x02 0xAA 0x55 0xFF	ETX

III. Typical application circuit

RhombusMF6800ST supports external balance drive RF antenna. The serial port can be directly connected with SCM serial port or connected with RS232 interface of PC after level transfer. The typical design for reference is as follows:

Note: Rhombus' products must work with linear regulated power supply, and other kinds of power supply are prohibited.