GENERAL DESCRIPTION

RhombusMF6801ST is a high performance internal antenna ISO14443 type B format IC card R/W engine module ,which is fit for the door lock identifying RFID card, it can also be widely used in office/family security, ID identification, access control system, "smart card" and various of RFID systems in the process of producing.

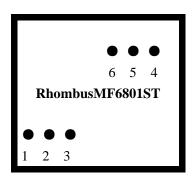
FEATURE

- Built-in internal antenna;
- Function distance up to 30mm;
- Typical time for reading and writing is no more than 2.5ms and 6ms;
- Single power supply and low dissipation design
- Support TTL level serial interface;
- Completely support SR176 and the compatible cards of ST company;
- Index form is compatible with 28PIC IC socket
- Mini outline designed

Electrical and Mechanical Specification

Absolute Maximum Ratings

ITEM	SYMBOL	VALUE	UNIT
Power Supply	VCC	6	V
Operating Temp.	Т	0~+70	$^{\circ}$
Storage Temp.	$\mathrm{T}_{\scriptscriptstyle \mathrm{STR}}$	-55~+125	${\mathbb C}$


Specification

Under T_A = 25°C and VCC=+5V unless specific statement

ITEM	SYMBOL	MIN	TYP	MAX	UNIT
Power Supply	VCC	3.3	5	5.5	V
Current Supply	I _C (work)		70	120	mA
	$I_s(wait)$			2	uA
Operation Freq.	F_{REQ}		13.56		MHz
Effective Distance*	DIS	0	30	50	mm
Operation time for	$T_{ m RD}$		2.5		ms
reading					
Operation time for	Twr		6		ms
writing					

Effective distance depends on related cards, antenna designed and operating environment Not including the passing time of agreement.

INTERFACE DESCRIPTION

BOTTOM VIEW

NUMBER	SYNBOL	DESCRIPTION		
1	IND	Operation led output*		
2	TXD	Serial data output*		
3	RXD	Serial data input		
4	GND	Ground		
5	VCC	+5V power supply		
6	SW	Module operation control**		

^{*}A symbol of working situation, high level indicates it is on working, low level indicates it is off working, the LED can connect the index directly.

Related information

Card information

SR176 comply with the standard of ISO14443-2&3 TYPE B

1. Performance index

- According to ISO14443-2 TYPE B RFID interface criterion
- According to ISO14443-3 TYPE B data frame format criterion
- Working frequency:13.56MHz
- Subcarrier 847KHz
- Date exchange rate: 106kbit/s
- 256bit data storage capacity
- 64bit exclusive serial number of cards, 8bit symbol of card chip,
 8bit protect character

^{**}SW: A symbol of Module operation control. When it connects the ground, it is on working, hangs it or connects the high level, it is off working. The time for the module from off to on is 150ms (max).

- 176bit can lock EEPROM in the range of user's data
- The times for data updating exceeds 100,000 times, it can be reserved for 10 years.

2. Memory structure

256bit memory area of SR176 consists of 8 groups, 16 blocks, there is 16bit in each block, and 16bit is basic unit for the data operation. The memory area structure is as follows:

Block address	Group	Top 16b	it block data	bottom	description
	number	B15	b8 b7	b0	
0	0	UID0			Unchangeable
1		UID1			exclusive serial number
2	1	UID2			of 64bit
3		UID3			
4	2	User's data a	rea		Can lock EEPROM
5		User's data a	rea		
6	3	User's data a	rea		Can lock EEPROM
7		User's data a	rea		
8	4	User's data a	rea		Can lock EEPROM
9		User's data a	rea		
10	5	User's data a	rea		Can lock EEPROM
11		User's data a	rea		
12	6	User's data a	rea		Can lock EEPROM
13		User's data a	rea		
14	7	User's data area			Can lock EEPROM
15		Lock the	reserved	Code	
		controlled		of	
		byte		card	
				chip	

The first four blocks in the memory area is exclusive serial number of 64bit, it is unchangeable.

EEPROM user's data area can be rewritten when it is 176bit from the fourth block to the fourteenth block, used in the applied data memory.

The fifteenth block is control block, high 4bit of low byte is reserve bit, low 4bit is card chip code, it can be decided to implement the operation on a certain card by using the card chip code in the applied process, high byte 8bit is the locked one in the user's data area, each bit corresponds to lock state of memory area, 0 represents it can be written in the group, 1 represents it can not. The fifteenth block is one-off programmable, it means when one bit has been set as 1, it will be not allowed to reset as 0. The default of the byte is 0x03 when the card left factory, and it avoids to rewrite the card serial number.

TWO serial interface agreements

1. serial interface specification

RhobmusMF6801ST transmit data through serial interface and host computer (SCM, MPU, controller, etc.), finish all the operations to the cards according to the host computer's order.

The specification of data frames for the serial interface is 9600bps at baud rate. One inception bit, eight data bit ,one stop bit, no odd and even checkout bit. In the communication process, the lowest effective byte is transmitted first, the lowest effective bit of the byte is transmitted first.

2. Control character

It defined 4 control characters, it shows the start , the end , the responsion and no responsion. The whole is as follows:

Definition	Symbol	Value
Start symbol	STX	0x02
End symbol	ETX	0x03
Responsion	ACK	0x06
No responsion	NAK	0x15

3. Agreement description

The communication process must engine the RHOMBUSMF6801ST through the orders and data that the host computer transmits. Then RHOMBUSMF6801ST return the result state and data that the order implemented to the host computer. The two parties who need communication start a communication by shaking the hands, then come to transmit the data.

The transmition process of the orders of the host computer as follows,

Host computer	Data transmition	RHOMBUSMF6801ST	description
	direction		
STX	→		The host computer can
	←	ACK	resend the STX if it

		11.1.1.
Oder data	→	didn't receive ACK or
block+ETX		NAK; It comes to order
		the block transmit data
		45ms when it receive
		ACK
		The internal between
		two bytes must be less
		than 15ms. During the
		process ,if the host
		computer receive any
		messages that
		RHOMBUSMF6801ST
		sends, and it indicates
		host computer will lose
		the steps with
		RHOMBUSMF6801ST
		communication at the
		same time. The host
		computer can stop send
		the orders, and it will
		wait for15ms to
		restart the handshake.

First the PC sends STX and wait for RHOMBUSMF6801ST back ACK to restart the data block transmition process. The PC can decide to resend STX or stop communication if it didn't receive ACK or NAK in 20ms. Then it comes to deal with the failure. When the PC receive ACK of RHOMBUSMF6801ST,

It will send the order data block which consists of operation order, operation data order, etc. to RHOMBUSMF6801ST, and it ends sending by sending ETX character, then waits for the return result from RHOMBUSMF6801ST.

4. Data block format

A. Order data block

SegNo	Cmd	Len	Data[]	BCC
Beqrio	Cilia	LCII	D աալյ	DCC

SeqNo: one character data package exchange serial number, the value range is 0~255, when the PC sends next order after a correct data exchange, it will plus 1 on serial number.

RHOMBUSMF6801ST will back its current received data package serial number when it reacts the data block.. The PC program can strengthen then communication integrality by using the serial number, and ignore the serial number to predigest the communication process;

Cmd: operation order symbol of a character, it defined 8 orders;

Len: the order operation length of a character. The value range is $0\sim3$, 0 is on behalf of no order operation;

Data[]: Len characters of the order operation data, when Len=0, the item is not existed;

BCC: check sum of a character, it is XOR of serial character of all data in the data block.

BCC=SeqNo+Cmd+Len+Data[]

B. response data block

SegNo	Status	Len	Data[]	BCC
Degrio	Status	LCII	Data[]	DCC

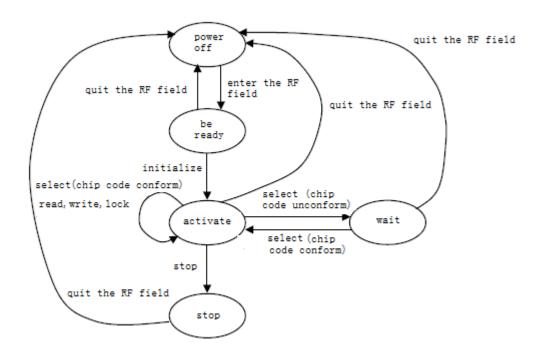
SeqNo: one character's current received data package exchange sequence number;

Status: one character's order implement result , 0 represents it succeeds in implement, other values represents wrong code;

Wrong code	description
0x01	Operation order symbol fault
0x02	Order operation length fault
0x03	Order data block check sum fault
0x04	No cards reaction
0x05	Cards data stream format fault
0x06	Cards data stream CRC fault
0x07	Read-write address slop over fault(read
	command operation address is 0~15, write
	command operation address is 4~14)
0x08	RF output doesn't start(when RF is close,
	RHOMBUSMF6801ST doesn't carry out any
	commands unless it starts or closes RF)
0x09	Write operation fault
0x0A	Lock operation fault

Len: one character's data reaction length, value range is0~2, if command implement is wrong, the value is 0;

Data[]:Len characters of reaction data, when Len=0, the item is not existed;


BCC: check sum of a character, it is XOR of serial character of all data in the data block.

BCC=SeqNo+Cmd+Len+Data[]

5.operation command in detail

RHOMBUSMF6801ST supports 8 operation commands, they are start RF, close RF, initialization , decision , read, write, lock, and stop commands. The first two commands are used to control the work situation of the RF transmition circurt inside RHOMBUSMF6801ST , other commands carry out the cards operation.

SR176 cards has 5 states, different states accept different operations and come to transform corresponding states, as follows:

The command format supported by RHOMBUSMF6801ST is as follows:

Comm	nand		Response	e		Description
Command	Data	Content	Result State	Data Length	Data Content	
Notation	Length					
0x41	0	-	0	0	-	Startup RF output,
			Error Code	0	-	engine enter the normal
						working state.
0x54	0	-	0	0	-	Close RF output,
			Error Code	0	-	engine enter the standby
						state.
0x49	0	-	0	1	Chip code	Initialization command
			Error Code	0	-	choose one card from the
						IC cards in effective RF
						field and place it in
						activation state, and return
						its chip code (low 4bit
						effective)
0x53	1	Chip code(low	0	1	Chip code	Choose command
		4bit effective,	Error code	0	-	Choose cards with
		high 4bit				specified chip code from
		reserved as 0)				the IC cards in effective
						RF field and place it in
						activation state.

0x52	1	Block address	0	2	two-byte	Read command
					block data	The range of block
					in the front	Address 0~15,the 15 th
					of low byte	block is the control block
					row	of the card
			Error code	0	-	
0x57	3	Block address	0	0	-	Write command
		+	Error code	0	-	The range of block address
		two-byte block				4~14
		data in the front				
		of low byte				
		row				
0x50	2	Two-byte card	0	0		Lock command
		control block	Error code	0	-	The content actually
		data in the front				written in is the logic or of
		of low byte				the former control block
		row				data and the specified data
						in command
0x48	0	-	0	0	-	Stop command
			Error code	0	-	Card will cease all
						responses after it receives
						stop command until the
						card is removed from and
						reenter the effective RF
						field

2. Example

Read the content of the 5th block of one card(If RF output is started, the chip code is 0,and the data of the 5th block inside the card is 0X55AA, the following forms are the content of the communication between PC and RHOMBUSMF6801ST)

The 1ST step: Initialization

Command	PC	STX		0x00 0x49 0x00 0x49	ETX
		↓	↑	↓	↓
	RHOMBUSMF6801ST		ACK		

Response	PC		ACK		
		↑	↓	†	1
	RHOMBUSMF6801ST	STX		0x00 0x00 0x01 0x00 0x01	ETX

The 2nd step: select(If operating directly after initialization, this step could be omitted)

Command	PC	STX		0x01 0x53 0x01 0x00 0x53	ETX
		↓	†	↓	↓
	RHOMBUSMF6801ST		ACK		

Response	PC		ACK		
		↑	↓	↑	↑
	RHOMBUSMF6801ST	STX		0x01 0x00 0x01 0x00 0x00	ETX

The 3rd step: read

Command	PC	STX		0x02 0x52 0x01 0x05 0x54	ETX
		↓	†	↓	↓
	RHOMBUSMF6801ST		ACK		

Response	PC		ACK		
		↑	↓	↑	†
	RHOMBUSMF6801ST	STX		0x02 0x00 0x02 0xAA 0x55	ETX
				0xFF	

Note: Rhombus' products must work with linear regulated power supply, and other kinds of power supply are prohibited.